Search results for "completeness theorem"

showing 10 items of 14 documents

What is Mathematics: Gödel's Theorem and Around (Edition 2013)

2013

Hyper-textbook for students in mathematical logic and foundations of mathematics. Edition 2013. ATTENTION! New Edition 2015 available at https://dspace.lu.lv/dspace/handle/7/5306.

foundations of mathematicsincompleteness theoremmathematical logicGödelGoedel
researchProduct

Protoalgebraicity and the Deduction Theorem

2001

This chapter is intended as an introduction to the Deduction Theorem and to applications of this theorem in metalogic.

Pure mathematicsDeduction theoremFundamental theoremComputer Science::Logic in Computer ScienceCompactness theoremHeyting algebraSequent calculusFixed-point theoremGödel's completeness theoremSqueeze theoremMathematics
researchProduct

Introduction to Mathematical Logic, Edition 2021

2021

Textbook for students in mathematical logic. First order languages. Axioms of constructive and classical logic. Proving formulas in propositional and predicate logic. Glivenko's theorem and constructive embedding. Axiom independence. Interpretations, models and completeness theorems. Normal forms. Tableaux and resolution methods. Herbrand's theorem. Sections 1, 2, 3 represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian).

resolution methodHerbrand's theoremmodel theoryComputer Science::Logic in Computer Sciencepredicate logicmathematical logic:MATHEMATICS::Algebra geometry and mathematical analysis::Mathematical logic [Research Subject Categories]propositional logictableaux methodcompleteness theorems
researchProduct

Introduction to Mathematical Logic (Edition 2017)

2017

Hyper-textbook for students in mathematical logic, Edition 2017

first order logiclogicresolution methodpredicate logicMathematicsofComputing_GENERALresolutionintuitionistic logicHerbrand theorempropositional logicmodel theoryconstructive logicData_FILESComputingMilieux_COMPUTERSANDEDUCATIONnormal formsmathematical logicHardware_ARITHMETICANDLOGICSTRUCTUREScompleteness theorem
researchProduct

Phenomenological-Semantic Investigations into Incompleteness

2000

When today the phenomenologist surveys the history of the philosophical comprehension of Godel’s theorems, he is confronted with the realization that the decisive publications come almost exclusively from the sphere of analytic philosophy.1 But does phenomenology in the spirit of Husserl not mean to keep in step with the epochal results of the special sciences by working on the phenomenological understanding of them? Phenomenological research of this kind means the same as development of phenomenological theory of science (Wissenschaftstheorie). In connection with the incompleteness theorems, the latter would be confronted with fundamental questions such as, “To what extent can mathematical…

Special sciencesInterpretative phenomenological analysisPhilosophyModal logicGödelGödel's incompleteness theoremsMathematical proofPhenomenology (psychology)computerNatural languagecomputer.programming_languageEpistemology
researchProduct

Formālisms kā reālās matemātikas filozofija: 14 argumenti

2015

Referāts Latvijas Universitātes 73.zinātniskajā konferencē 2015.gada 13.februārī.

formalismfoundations of mathematics:MATHEMATICS [Research Subject Categories]:HUMANITIES and RELIGION [Research Subject Categories]incompleteness theoremsaxiomatic set theoryplatonism
researchProduct

Logic, Computing and Biology

2015

Logic and Computing are appropriate formal languages for Biology, and we may well be surprised by the strong analogy between software and DNA, and between hardware and the protein machinery of the cell. This chapter examines to what extent any biological entity can be described by an algorithm and, therefore, whether the Turing machine and the halting problem concepts apply. Last of all, I introduce the concepts of recursion and algorithmic complexity, both from the field of computer science, which can help us understand and conceptualise biological complexity.

Turing machinesymbols.namesakeRecursionTheoretical computer scienceComputer scienceComputational logicFormal languagesymbolsAnalogyComputerApplications_COMPUTERSINOTHERSYSTEMSGödel's incompleteness theoremsUnconventional computingHalting problem
researchProduct

What is Mathematics: Gödel's Theorem and Around (Edition 2015)

2015

Hyper-textbook for students in mathematical logic and foundations of mathematics. Edition 2015.

foundations of mathematics:MATHEMATICS [Research Subject Categories]MathematicsofComputing_GENERALComputingMilieux_COMPUTERSANDEDUCATIONincompleteness theoremsmathematical logicaxiomatic set theoryHilbert's Tenth problemfirst order arithmetic
researchProduct

Realism, metamathematics, and the unpublished essays

1995

This initial chapter is divided into two sections. The first is devoted to a brief exposition of the intuitive essence and the philosophical motivation of Godel’s main metamathematical results, namely his completeness theorem for elementary logic (1930) and his incompleteness theorems for arithmetic (1931). Thereafter some discussion of the different ways to confront the relationship between those results and Godel’s philosophical realism in logic and mathematics is offered. Thus, mathematical realism will be successively regarded as (i) a philosophical consequence of those results; (ii) a heuristic principle which leads to them; (iii) a philosophical hypothesis which is “verified” by them.…

Philosophy of mathematicsPhilosophyMetamathematicsGödelGödel's completeness theoremGödel's incompleteness theoremsPhilosophical realismcomputerRealismEpistemologyExposition (narrative)computer.programming_language
researchProduct

Deontology of Compound Actions

2018

This paper, being a companion to the book [2] elaborates the deontology of sequential and compound actions based on relational models and formal constructs borrowed from formal linguistics. The semantic constructions presented in this paper emulate to some extent the content of  [3] but are more involved. Although the present work should be regarded as a sequel of [3] it is self-contained and may be read independently. The issue of permission and obligation of actions is presented in the form of a logical system . This system is semantically defined by providing its intended models in which the role of actions of various types (atomic, sequential and compound ones) is accentuated. Since the…

Relation (database)LogicComputer sciencePermission050905 science studies0603 philosophy ethics and religionAtomic actionHistory and Philosophy of ScienceCompound actionCanonical modelFinitaryFrameGödel's completeness theoremObligationAxiomSequential action05 social sciences06 humanities and the artsFocus (linguistics)AlgebraProhibitionObligation060302 philosophy0509 other social sciencesComputational linguisticsModelStudia Logica
researchProduct